Голосов: 0
#1
Описание курса [В.Бабушкин, С.Гафаров, Б. Печёнкин] Симулятор Machine Learning Engineer продвинутая практика (2022):
Работа над реальными задачами под руководством ведущих ML-специалистов.
Для кого эта программа:
1. Хотите отработать знания на практике
Уже умеете обучать и деплоить ML-модели, писать SQL-запросы к базам данных, проводить A/B-тесты и строить BI-дашборды, но хотите закрепить свои знания.
2. Никогда не работали в индустрии
Хорошо разбираетесь в теории машинного обучения, но никогда не работали в индустрии и хотите получить опыт решения реальных бизнес-задач.
Как проходит обучение:
1. Используйте нашу инфраструктуру
- Работайте со всеми необходимыми инструментами на выделенном сервере.
- Практикуйтесь на данных из реальных задач.
- Отправляйте свои решения на автоматическую проверку нашей системой.
- Решайте актуальные задачи ML-инженера.
- Занимайтесь практикой без скучной теории.
- Главное — это работающее решение.
- Решайте задачи разных уровней: от Intern до Senior
- Пишите несложный код или создавайте полноценные ML-сервисы
1. Строить дашборды и писать SQL запросы.
2. Оценивать влияние моделей на показатели бизнеса с помощью A/B-тестов.
3. Деплоить модели и создавать свои микросервисы для ML
Задачи, которые будем решать
Модуль 1 - Эмбеддинги товаров
ML-команде маркетплейса потребовались векторные представления товаров, учитывающие паттерны поведения пользователей. Постройте эмбеддинги на основе истории покупок, используя любой подходящий метод.
Модуль 2 - Постпроцессинг предсказаний
Модель динамического ценообразования выдала рекомендованные цены. Убедитесь, что они соответствуют бизнес-логике: не превышают цены конкурентов и не приводят к сверхпродажам и дефициту товаров на складе. Найдите способ скорректировать цены за минимальное число правок цены.
Модуль 3 - А/В тестирование
Дизайнеры внесли изменения в интерфейс сайта. Аналитик провёл A/B-тест и не обнаружил статистически значимого изменения конверсии. Проверьте, верны ли его расчёты, и попробуйте провести тест другим способом.
Модуль 4 - Приближённый поиск ближайших соседей
ML-инженер из другого отдела построил экспериментальную ML-модель в Jupyter-ноутбуке. Бизнес-заказчику понравились результаты работы модели, и вас попросили упаковать её в продукт. Перенесите код из Jupyter в модули библиотеки, покройте модель тестами, зафиксируйте зависимости, упакуйте всё в Docker и настройте автоматический пересчёт предсказаний по расписанию.
Модуль 5 - Деплой модели
Мы обучили модель, которая на основе картинки и названия товара генерирует эмбеддинги. Но мы не можем с её помощью искать дубликаты среди миллионов товаров — сложность квадратичная. Попробуйте какой-нибудь другой способ и предложите своё решение.
Модуль 6 - Уверенность модели
Вы обучили модель, прогнозирующую отток пользователей, и получили ROC-AUC, равный 0.89. Ваш руководитель просит уточнить, какой доверительный интервал у этой оценки и на каких новых клиентах модель уверена в своём предсказании лучше, а на каких — хуже.
На симуляторе вы получите доступ к инфраструктуре и задачам разного уровня, которые подготовили ML-инженеры с опытом работы в ритейле, e-commerce и BigTech-компаниях.
Здесь вас ждёт практика на задачах, максимально приближенных к реальным, и в окружении, максимально похожем на рабочее. Вы сможете начать с комфортного для вас уровня сложности и повышать его по мере развития ваших навыков. Закрепив знания на кейсах из индустрии, вы подготовите себя к решению аналогичных задач на работе.
Подробнее:
Для просмотра содержимого вам необходимо авторизоваться
Скачать курс - [В.Бабушкин, С.Гафаров, Б. Печёнкин] Симулятор Machine Learning Engineer продвинутая практика (2022):
Для просмотра содержимого вам необходимо авторизоваться
Последнее редактирование модератором: